A solution of Volterra-Hamerstain integral equation in partially ordered sets
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
Tripled partially ordered sets
In this paper, we introduce tripled partially ordered sets and monotone functions on tripled partiallyordered sets. Some basic properties on these new dened sets are studied and some examples forclarifying are given.
متن کاملNumerical solution of a type of weakly singular nonlinear Volterra integral equation by Tau Method
In this paper, a matrix based method is considered for the solution of a class of nonlinear Volterra integral equations with a kernel of the general form $s^{beta}(t-s)^{-alpha}G(y(s))$ based on the Tau method. In this method, a transformation of the independent variable is first introduced in order to obtain a new equation with smoother solution. Error analysis of this method is also ...
متن کاملA Solution of Generalized Fractional Volterra Type Integral Equation Involving
Department of Mathematics, NRI Institute of Technology and Management, Gwalior-474001, India Address: B-3, Krishna Puri, Taraganj, Lashkar, Gwalior (M.P.)-474001, India E-mail: [email protected], [email protected] School of Mathematics and Allied Sciences, Jiwaji University, Gwalior (M.P.)-474011, India E-mail: [email protected] Research Scholar, Suresh Gyan Vihar ...
متن کاملHyers-Ulam stability of Volterra integral equation
We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.
متن کاملPiecewise Constant Solution of Non Linear Volterra Integral Equation
In this paper, modification in the computational methods, for solving Non-linear Volterra integral equations, is presented. Here, two piecewise constant methods are considered for obtaining the solutions. The first method is based on Walsh Functions (WF) and the second method is via Block Pulse Functions (BPF). Comparison between the two methods is presented by calculating the errors vis-à-vis ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 4
صفحات 277- 281
تاریخ انتشار 2011-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023